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AbstractÐThis study presents a probability density function propagation approach to dispersion model-
ing. The model calculates the instantaneous spatial spread about the ensemble-mean trajectory for a
group of particles as they move in the Lagrangian reference frame, and thus it precludes the need to
generate large numbers of individual particle trajectories to represent the particle phase. This method
for ®nite-inertia particle dispersion is based on Taylor's approach and it approximates the normalized
particle velocity correlation functions with Frenkiel functions. The required particle time scales are
based on published analytical studies and some independent analysis. All the turbulent scales needed in
this approach can be obtained from practical turbulence models. A new procedure to estimate the par-
ticle ¯uctuating velocity statistics along the ensemble mean particle trajectory is also developed. This
procedure is based on the particle momentum equation and does not involve any empirical constants.
The present model is evaluated by use of the experimental data of Snyder and Lumley and those of
Wells and Stock. The ability of the model to predict particle dispersion and particle velocity decay is
quite satisfactory for the cases studied. The study also demonstrates the computational advantage of
the present model in comparison with the Lagrangian stochastic models that rely on the Monte Carlo
procedure to represent the particle phase. The Frenkiel functions seem adequate to model the normal-
ized particle velocity correlations. The validation studies indicate that the crossing trajectory e�ects
induce a negative loop in the normalized particle transverse (relative to particle drift) velocity corre-
lations. These negative loops apparently do not exist in the normalized particle longitudinal (relative to
particle drift) velocity correlations. # 1998 Elsevier Science Ltd. All rights reserved
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1 . INTRODUCTION

Several industrial applicationsÐpulverized-coal reactors, spray combustors, cyclone separators,

spray drying and cooling systems, and pneumatic transport of particulate materialÐinvolve the

turbulent dispersion of dilute concentrations of discrete particles. Consequently, understanding

the fundamental mechanisms responsible for dispersion of particles due to turbulence is import-

ant to develop reliable mathematical models that apply to these and other industrial processes.

Taylor (1921) was one of the ®rst who attempted to mathematically describe dispersion in tur-

bulent ¯ows. He studied a simple case of turbulent dispersion of ¯uid particles in one-dimen-

sional, homogeneous and stationary ¯ows. Taylor's approach has been successfully used in

atmospheric dispersion modeling where the dispersing particles can be assumed to follow all the

¯uid ¯uctuations; that is, they behave like ¯uid particles (Sawford 1985; Thomson 1987).

However, the turbulent motion of a ®nite-inertia particle di�ers from that of a ¯uid particle

because of two important factors: (1) particle inertia; and (2) the ®nite relative velocity between

the particle and the surrounding ¯uid due to the external forces acting on the particle. The e�ect

of external forces, such as gravity, on the particle motion is also known as Crossing Trajectory

E�ects (CTE). Although the concepts developed by Taylor can be theoretically applied to turbu-

lent dispersion of (®nite-inertia) particles, the particle properties needed in the modeling

approach are not directly available from either turbulence models applicable to practical systems

nor the particle equation of motion.

A vast majority of particle dispersion models for dilute ¯ow systems are cast in the

Lagrangian frame, and they account for particle momentum conservation. These models are

based on the Monte Carlo approach, so as to obtain the statistical information that character-

izes the particle behavior. These models can be broadly classi®ed into two categories: (1) models
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based on the eddy lifetime concept (Gosman and Ioannides 1981; Shuen et al. 1983; Chen and
Crowe 1984); and (2) time-correlated dispersion models (Zhuang et al. 1989; Berlemont et al.

1990; Burry and Bergeles 1993; Lu et al. 1993; Chen and Pereira 1995). The main challenge in

both techniques is to determine the ¯uctuating ¯uid velocity vector at the particle location

needed to solve the particle equation of motion. The eddy lifetime concept models that are
based on the constant lifetime schemes oversimplify the time correlations in the turbulent vel-

ocities (Wang and Stock 1992a; Graham and James 1996). However, these traditional eddy life-

time models can be modi®ed by choosing certain probability distributions for the eddy lifetimes
and eddy sizes in order to specify a particular form for the Lagrangian ¯uid velocity auto-corre-

lation function (Kallio and Reeks 1989; Wang and Stock 1992a; Graham and James 1996). In

the time-correlated models, a ¯uid particle trajectory is constructed using a Markov-chain

model simultaneously with the particle trajectory. The Markov-chain model used to generate the
¯uid particle trajectory is nothing but a numerical implementation of Taylor's approach, and it

can account for the time correlation in the ¯uctuating ¯uid velocity vector. The time-correlated

models make use of the spatial correlation functions to determine the required ¯uctuating ¯uid
velocity vector at the particle location.

Both the eddy lifetime concept models (Huang et al. 1993; Graham 1996) and the time-corre-

lated models (Zhuang et al. 1989; Berlemont et al. 1990) attempt to account for particle inertia
and crossing trajectory e�ects. However, since the time-correlated models account for the ¯uctu-

ating ¯uid velocity time correlation, a physical phenomenon observed in turbulent ¯ows, they

have been shown to be better compared to the traditional eddy lifetime models in simple ¯ows

(Zhuang et al. 1989; Parthasarathy and Faeth 1990). Furthermore, both models rely on the
Monte Carlo procedure to represent the particle phase. Therefore, these models require about

2000±6000 individual particle trajectory calculation per particle size (or type) per starting lo-

cation to correctly predict dispersion in near isotropic, homogeneous decaying turbulent ¯ows
(Baxter 1986; Zhuang et al. 1989; Chang and Wu 1994; Lu 1995). In complex, polydispersed

¯ows, the required number of particle calculations using these models is naturally greater.

The particle dispersion model presented in this paper is based on both the Taylor's approach
and the particle momentum equation. In the present model, the particle positional probability

density function (PDF) is tracked as a function of time and space. Since this approach is analo-

gous to Taylor's model, the time correlations in the particle ¯uctuating velocities are easily

accounted for. Also, this approach has the potential to be more e�cient, for it does not require
the computation of a large number of trajectories. In this model, one particle ensemble calcu-

lation per particle size/type per starting location is su�cient to describe turbulent particle dis-

persion in simple ¯ows. This concept of the particle positional PDF propagation was
demonstrated earlier by Baxter (1989). However, Baxter did not investigate in detail the appro-

priate choice for the particle normalized Lagrangian velocity correlation functions, the particle

Lagrangian time scales, and the expressions for the particle velocity decay. Therefore he was

able to validate his model only for the case of ¯uid particle dispersion (Baxter and Smith, 1993;
Baxter 1989). As indicated above, the particle inertia and its drift (relative) velocity greatly in¯u-

ence the particle properties, such as the shape of the normalized Lagrangian correlation function

and the particle Lagrangian time scales. Therefore, the objective of this paper is to present the
appropriate equations that are based on the information available from practical turbulence

models for all the particle and ¯uid phase properties required in this approach, to develop a

procedure to estimate the particle ¯uctuating velocity correlations, and to evaluate this new

approach for ®nite-inertia particles in simple ¯ows.

Section 2 presents the mathematical description of the PDF propagation approach. It also

explains the procedure developed to estimate the particle ¯uctuating velocity covariance matrix.

Although the model can be extended to anisotropic turbulence, for this paper, the equations are
developed for the isotropic case. In Section 3, the present model is evaluated with the help of ex-

perimental data available in the literature. The experiments chosen for validation purposes are

those of Snyder and Lumley (1971), (hereafter referred to as SL) and Wells and Stock (1983),
(hereafter referred to as WS). Both experiments involved particle dispersion in near isotropic,

homogeneous decaying turbulent ¯ow.

J. S. SHIROLKAR and M. Q. MCQUAY664



2. DESCRIPTION OF THE MODEL

If the particles, which have similar physical properties and the same initial conditions, are

assumed to have a certain standard distribution (such as, normal, lognormal, etc.) in space at

any instant of time, then it is possible to propagate the positional PDF of a particle ensemble

instead of tracking individual particles. In order to propagate such a PDF, the following infor-

mation is needed: (1) the shape of the particle spatial distribution; (2) the ensemble mean par-

ticle location as a function of time (Zi); and (3) the corresponding particle ensemble covariance

matrix (sij).
In grid generated turbulence, such as in the experiments of SL and WS, the turbulence is

homogeneous in the planes normal to the mean ¯ow. Thus, as a consequence of the central

limit theorem, the dispersion of particles in the planes normal to the mean ¯ow will asymptoti-

cally have a Gaussian PDF (Tennekes and Lumley 1972). The Gaussian PDF for particle pos-

itions has also been observed in the experiments of SL. The expression for a n-dimensional

Gaussian PDF is given by (Baxter 1989):

P�xi; t� �
jsijp �t�j0:5
�2p�n=2 exp ÿ0:5

Xn
i;j�1
�xi ÿ Zp;i�t���xj ÿ Zp;j�t��sijp �t�

 !
�1�

where sp
ij is the inverse of the covariance matrix, sp,ij.

As can be inferred from [1], a Gaussian PDF is completely described by the mean (Zp,i), and
the covariance matrix (sp,ij). The approach presented in this paper focuses on the determination

of these two moments of the particle positional PDF. The appropriate PDF shape for a particu-

lar application should be selected either based on experimental evidence or from a theoretical

analysis.

For a particle ensemble, the expressions for the mean and covariance can be developed analo-

gous to Taylor's analysis. The resulting expressions have the form

Zp;i�t� �
�t
0

hup;i�t1�idt1 �2a�

and

sp;ij�t� �
�t
0

�t2
0

�hu 0p;i�t1�u 0p;j�t2�i � hu 0p;j�t1�u 0p;i�t2�i�dt1 dt2: �2b�

The ensemble mean particle velocity needed in [2a] can be obtained from the ensemble mean

particle momentum equation. The simpli®ed particle momentum equation, which neglects the

Basset, virtual mass, Magnus, Sa�man, and buoyancy forces, can be written in terms of the par-

ticle relaxation time (tp) as (Gosman and Ioannides 1981):

dhup;ii
dt
� 1

tp
�huf ;ii ÿ hup;ii� � gdi3 �3�

where

tp � mp

3pdpmf

1

�1� 0:15 Re0:687p � : �4�

The particle Reynolds number (Rep) is de®ned in terms of the particle drift velocity (vd) as

Rep �
rf dpvd
mf

�5�

where

vd � jhuf ;ii ÿ hup;iij: �6�
The equations [3] and [4] above are valid for practical dilute ¯ow applications where the turbu-
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lent intensities are lower than 20%, the particle-to-¯uid density ratios are greater than 200, and
the particle Reynolds number is less than 1000 (Clift et al. 1978; Shuen et al. 1983). In [3], the
coordinate direction i= 3 corresponds to the longitudinal direction aligned with gravity (or the
particle drift direction); i = 1 and 2 are the transverse directions (relative to particle drift).

Equation [3] can be easily solved as a linear, ®rst-order, nonhomogeneous, ordinary di�eren-
tial equation for small time steps (Dt) over which the particle relaxation time, and the ensemble
averaged ¯uid velocity vector (huf,ii) acting on the particle ensemble are assumed to be constant.
The required ¯uid velocity vector can be obtained from the knowledge of the PDF at the pre-
sent time, and the ¯uid velocity predictions available from turbulence models applicable to prac-
tical system, such as the k-E model. For example, for a Cartesian coordinate system, the ¯uid
velocity vector acting on the particle ensemble is approximated from the knowledge of the par-
ticle PDF at a given time by the following expression (Smith 1995):

huf ;ii�t� �
�1
ÿ1

�1
ÿ1

�1
ÿ1

�uf ;i�x1; x2; x3�P�x1; x2; x3; t�dx1 dx2 dx3: �7�

For the experiments of SL and WS, where the particles were convected by a unidirectional uni-
form ¯uid velocity (U), the above expression simpli®es to

huf i�t� � U: �8�
The real challenge in this approach is to estimate the particle ¯uctuating velocity correlations
appearing in the double integral for the particle ensemble covariance matrix [2b]. In order to cir-
cumvent this problem, a normalized Lagrangian particle velocity correlation tensor similar to
the one used by Taylor (1921) is de®ned below:

RL
p;ij�t1; t2� �

hu 0p;i�t1�u 0p;j�t2�i
hu 0p;iu 0p;ji�t2�

: �9�

This equation, when used to simplify [2b], produces the following expression:

sp;ij�t� �
�t
0

�t2
0

hu 0p;iu 0p;ji�t2��RL
p;ij�t1; t2� � RL

p;ji�t1; t2��dt1 dt2; �10�

where no summation is implied for the repeated indices ``i'' and ``j''. Note that, although [9] and
[10] appear to be tensorally inconsistent, it is the most convenient form of representing these
equations. The individual components for a tensor that is analogous to [9] can be found in
Burry and Bergeles (1993).

Equation [10] indicates that it is possible to solve numerically for the ensemble positional co-
variance matrix for small time steps (Dt) if: (1) the particle ¯uctuating velocity covariance matrix
is known for the ensemble (hu'p,iu'p,ji) during a given time step; and (2) the expression for the
normalized Lagrangian correlation tensor is available.

If one assumes that the particles are introduced in the ¯ow ®eld at their equilibrium velocities
and that they evolve in a Markovian fashion, then the normalized Lagrangian correlation tensor
in [10] depends on both the particle properties at the present time (tÿ Dt), and on the residence
time (x = vt1ÿt2v). A common approximation for the tensor are the Frenkiel functions (1948)

RL
p;ij�t1; t2� � exp

ÿx
�m2 � 1�tpLij

�tÿ Dt�
� �

cos
mx

�m2 � 1�tpLij
�tÿ Dt�

� �
�11�

where tpLij
is the particle Lagrangian time scale tensor and m is the negative loop parameter of

the functions. Note that the time dependence of the particle time scales in [11] is approximated
by evaluating them along the ensemble trajectory.

The choice of Frenkiel functions to represent the normalized Lagrangian particle velocity cor-
relation tensor is based on the fact that they have been used successfully in calculating ¯uid par-
ticle trajectories in time-correlated stochastic models (Berlemont et al. 1990; Burry and Bergeles
1993). Also, these functions can model negative loops in the particle transverse velocity corre-
lations that have been observed both experimentally (Snyder and Lumley 1971) and in recent
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Direct-Numerical-Simulation (DNS) studies on particle dispersion (Squires and Eaton 1991;
Elghobashi and Truesdell 1992). DNS studies have shown that the particle transverse velocity
correlations (RL

p,11 and RL
p,22) acquires negative correlation zones (negative loops) for particles

with signi®cant drift velocities. These negative loops in the transverse velocity correlations are a
consequence of ¯uid continuity, and hence the occurrence of negative loops is also referred to as
the continuity e�ect (Csanady 1963). Note that the particle longitudinal velocity correlations
(RL

p,33) typically do not exhibit negative loops (Elghobashi and Truesdell 1992; Wang and Stock
1993), and hence they can be modeled using a simple exponential function (m = 0 in [11]).

Equation [11] indicates that [10] can be numerically solved over small time steps, provided
that estimates for the particle Lagrangian time scales and the particle ¯uctuating velocity covari-
ance matrix at each time step are known for the ensemble. The procedure used in the present
model to estimate these two particle properties is presented below. The time step used in the
present simulations is also brie¯y discussed.

2.1. The particle Lagrangian time scales

For a particular coordinate direction, the particle Lagrangian time scale can be viewed as the
measure of the time interval over which the particle ¯uctuating velocity in that direction corre-
lates with itself. This time scale depends on particle properties and also on the surrounding ¯ow
properties. In particular, two factors in¯uence the time interval over which the particle velocity
will be correlated with itselfÐthe particle inertia e�ects and CTE. The inertia e�ects and the
CTE are two competing events; that is, the particle inertia tends to increase the particle
Lagrangian time scale, whereas the CTE tends to decrease it. Therefore, in order to appropri-
ately estimate this time scale, it is necessary to consider these two factors simultaneously.

Wang and Stock (1993), in their analysis of turbulent dispersion of ®nite-inertia particles,
highlighted the di�erence between the ¯uid Lagrangian time scale (tfLij

) and the ¯uid
Lagrangian time scale along the particle's trajectory (tsfLij

). Obviously, the ¯uid time scale as
seen by the particle will be simultaneously in¯uenced by particle inertia, particle drift velocity,
and also by the turbulent characteristics of the ¯ow, whereas, the ¯uid Lagrangian time scale
will depend only on the turbulent characteristics of the ¯ow. A simple model for the particle
Lagrangian time scale can be mathematically construed as

tpLij
� max�tpIij; tsfLij

�; where Iij � 1 for all i; j: �12�
This equation implies that the particle velocity will roughly be correlated for a time, which is
either the particle relaxation time or the time interval over which the surrounding ¯uid velocity
is correlatedÐwhichever is largest. For the case when the particle relaxation time is greater than
the surrounding ¯uid time scale, the particle Lagrangian time scale is in¯uenced by particle iner-
tia. Otherwise, the particle Lagrangian time scale requires simultaneous consideration of the par-
ticle inertia and its drift velocity.

Csanady (1963) was one of the ®rst researchers to develop the expressions for the normalized
surrounding ¯uid velocity correlations (RL

sf,ij). In his work, these expressions were developed for
particles with zero inertia and were based on the hypothesis that the longitudinal normalized
surrounding ¯uid velocity correlations (RL

sf,33) are constant ellipsoidal curves. Later, Wang and
Stock (1993) extended this hypothesis to account for particles with ®nite inertia by introducing
a new time scale (T), which is de®ned as the ¯uid integral time scale seen by a ®nite-inertia par-
ticle in the absence of drift. The ®nal expressions in isotropic turbulence are:

RL
sf ;11�x� � RL

sf ;22�x� � 1ÿ vdx
2LfE33

� �
exp ÿ x

T

�������������������
1� T2v2d

L2
fE33

s !
�13a�

and

RL
sf ;33�x� � exp ÿ x

T

�������������������
1� T2v2d

L2
fE33

s !
�13b�

where the length scale LfE33
is the ¯uid integral length scale of the longitudinal spatial velocity
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correlation of the Eulerian ¯ow ®eld. It is implicit in [13a] and [13b] that the drift velocity is

aligned to the gravity direction (i = 3), as in the experiments of SL and WS. Note that in

Csanady's work, because of the zero inertia assumption, the time scale T in [13a] and [13b] was

equal to tfL, the ¯uid Lagrangian time scale (Csanady, 1963).

Equations [13a] and [13b] can be integrated to provide e�ective Lagrangian time scales for the

surrounding ¯uid:

tsfL11
� tsfL22

�
TLfE33

� ���������������������������������������������
L2
fE33
� T2v2d ÿ 0:5Tvd

q �
L2
fE33
� T2v2d

�14a�

and

tsfL33
� TLfE33��������������������������

L2
fE33
� T2v2d

q : �14b�

As expected, these expressions satisfy the two limiting conditions for isotropic turbulence, that

is, when

vd � 0; tsfL11
� tsfL22

� tsfL33
� T

and when

vd41 �or �LfE33
=vd� � T�; tsfL11

� tsfL22
� 0:5tsfL33

� 0:5�LfE33
=vd �:

Thus [14a] and [14b], along with [12] and [4], provide the necessary particle Lagrangian time

scale if one can estimate the ¯uid integral time scale seen by a ®nite-inertia particle in the

absence of the drift velocity.

2.1.1. Surrounding ¯uid time scale in the absence of drift. The ratio of the ¯uid Lagrangian to

Eulerian integral length scales is commonly de®ned as (Sato and Yamamoto 1987)

b �
tfL

�������
u
02
f

q
LfE33

�15�

where tfL is the ¯uid Lagrangian time scale. Note that there is no directional subscript on

either tfL nor u
02
f because of the implied isotropic assumption. The ¯uid Eulerian integral length

scale can be obtained in terms of parameters available from practical turbulence models (refer

to page 248 and 397 of Hinze 1975):

LfE33
� 0:588

�u 02f �3=2
E

�16�

where E is the rate of dissipation of the turbulent kinetic energy. Therefore, from [15] and [16]

we have

tfL � 0:588b
u
02
f

E
: �17�

According to Wang and Stock (1993) the surrounding ¯uid time scale seen by the particle in the

absence of drift (T) lies between the ¯uid Lagrangian time scale and the ¯uid Eulerian time

scale (tfmE) in a convective reference frame that moves with the mean ¯uid velocity. The time

scale tfmE is related to the ¯uid Eulerian integral length scale through a turbulence structure par-

ameter (mt):

tfmE � mt
LfE33�������
u
02
f

q � 0:588mt

u
02
f

E
: �18�

Wang and Stock (1992b, 1993) have also shown, with the help of numerical studies, that for
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mt=1, the time scale T increases with increase in the particle inertia parameter (St), de®ned as

St � tp
tfmE

: �19�

They presented a good curve ®t to their numerical results for the case of mt=1 (corresponding

to b = 0.356) to obtain the desired ¯uid time scale seen by the particle with zero drift (equation

[2.30] from Wang and Stock 1993):

T

tfmE
� 1ÿ 0:644

�1� St�0:4�1�0:01St� : �20�

In general, the time scale (T) can be obtained from

T � 0:588f
u
02
f

E
�21�

where f lies between b and mt and is a function of the particle inertia parameter. The inertia par-

ameter de®ned in [19] is a function of mt. Therefore, in order to separate the in¯uence of particle

inertia and the turbulence structure parameter on the value of f, we de®ne the particle inertia

parameter as

St �
tp

�������
u
02
f

q
LfE33

: �22�

Note that [22] is the same as [19] for mt=1. A normalized parameter, ( fÿ b)/(mtÿb), which var-

ies between 0 and 1 for any combination of b and mt, can now be considered to be a function

of the particle inertia parameter de®ned in [22]. Thus, from [20] it follows that

�f ÿ b�
�mt ÿ b� � 1ÿ 1

�1� St�0:4�1�0:01St� �23�

where St is de®ned in [22]. Equation [23] shows that f= b for St = 0; that is, the particle

behaves like a ¯uid particle, and the time scale T reduces to the ¯uid Lagrangian time scale in

[17]. Analogous to Wang and Stock's (1993) observation, the normalized parameter initially

increases rapidly for small values of the inertia parameter and then asymptotically reaches its

®nal value of 1.0 for increasing values of the particle inertia parameter.

The theoretical analyses of Lee and Stone (1983) have shown that in stationary, homogeneous

turbulence, the parameter b is related to mt by (equation [8] from Lee and Stone 1983):

mt � b

1ÿ b�8=p�1=2 : �24�

Therefore, if the value of b is known a priori, such as the ones available from the experiments

of Sato and Yamamoto (1987), it is possible to estimate the desired time scale, T, from [21], [23]

and [24]. Equation [16] provides the ¯uid integral length scale needed in [14].

Note that, [24] implies b = 0.385 for mt=1. This shows a certain discrepancy with Wang and

Stock (1992b, 1993) numerical results (b = 0.356 for mt=1). This is probably because [24] lacks

generality. However, the simulation results of this study demonstrate that [24] is adequate to

correctly predict dispersion in near isotropic, homogeneous decaying turbulent ¯ows (refer to

Section 3).

The ¯uid phase properties (u
02
f and E) needed to compute T and LfE33

are evaluated for the

particle ensemble using expressions analogous to [7]. For the case when the turbulence is homo-

geneous in planes normal to the mean ¯ow, these properties are obtained from the local turbu-

lent properties at the ensemble mean particle locations along the trajectory. Note that, all the

turbulent properties required in this approach are available from practical turbulence models.
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2.2. Procedure to estimate particle velocity covariance matrix

The procedure to calculate the particle ¯uctuating velocity covariance matrix starts by obtain-
ing an expression for the ¯uctuating particle velocity for a particular coordinate direction. This
is done by time-averaging the instantaneous particle momentum equation and then subtracting
this averaged equation from the original instantaneous equation. The resulting ¯uctuating par-
ticle velocity equation is further manipulated to obtain a di�erential equation for the particle
¯uctuating velocity cross correlations. The ensemble-averaged equation for the particle ¯uctuat-
ing velocity covariances is then given by the following expression:

d

dt
hu 0p;iu 0p;ji �

2

tp
hu 0p;iu 0p;ji �

1

tp
�hu 0sf ;iu 0p;ji � hu 0sf ;ju 0p;ii� �25�

where u'sf,i is the ¯uid ¯uctuating velocity along a particle trajectory. Similar to [3], the above
ordinary di�erential equation can be solved for small time steps, provided the values for the cor-
relation terms hu'sf,iu'p,ji are known during that time step.

The di�erential equation for hu'sf,iu'p,ji can also be obtained similar to [25]:

dhu 0sf ;iu 0p;ji
dt

� 1

tp
�hu 0sf ;iu 0sf ;ji ÿ hu 0sf ;iu 0p;ji� � u 0p;j

d

dt
u 0sf ;i

� �
�26�

where the ¯uid ¯uctuating velocity covariances (hu'sf,iu'sf,ji) acting on the particle ensemble can
be obtained from expressions similar to [7]. The procedure developed here to estimate the
unknown term in [26] (hu'p,j (d/dt) u'sf,ii) is described below.

It is possible to construct a trajectory for a surrounding ¯uid particle originating from the
ensemble mean particle location at present time. The surrounding ¯uid particle velocity after a
small residence time (x) is given by the Markov-chain model:

Du 0sf ;i � u 0sf ;i�t� x� ÿ u 0sf ;i�t� � �bsf ;ik ÿ dik�u 0sf ;k � dt�xi �27�
where dt�xi is a zero mean normal random vector independent of u'sf,i(t), and bsf,ij is a corre-
lation tensor accounting for e�ects from the previous time steps. The correlation tensor bsf,ij is a
function of the tensor hu'sf,iu'sf,ji and RL

sf,ij. A similar procedure is used to construct a ¯uid par-
ticle trajectory along a particle trajectory in the time-correlated stochastic models. The di�erence
here is that the surrounding ¯uid correlation tensor (bsf,ij) is used in [27] instead of the ¯uid cor-
relation tensor (bf,ij=f(hu'f,iu'f,ji, RL

f,ij)). Using bsf,ij in [27] directly solves for the ¯uid ¯uctuating
velocity along the particle trajectory and hence avoids the use of spatial correlation functions to
determine the ¯uctuating ¯uid particle velocity at the particle location.

Equation [27] can be mathematically manipulated to estimate hu'p,j (d/dt)u'sf,ii as follows:

u 0p;j
d

dt
u 0sf ;i

� �
� u 0p;j limx40

bsf ;ik�t; x� ÿ dik
x

� �
u 0sf ;k

� �
: �28�

If we invoke the assumption of turbulence isotropy, we have:

bsf ;ij � RL
sf ;ij for i=j

0 for i.

�
�29�

The limit in [28] can now be evaluated based on the observation that the convergent velocity
correlation (x 4 0) for Markov-chains is exponential (Wang and Stock, 1992a). Therefore,

lim
x40

bsf ;ik�t; x� ÿ dik
x

� �
� ÿ 1

tsfLik
for i=k

0 for i 6=k.

�
�30�

The unknown in [26] can be now determined as

u 0p;j
d

dt
u 0sf ;i

� �
� ÿ

hu 0
p;1u

0
sf ;1
i

tsfL11

hu 0
p;1u

0
sf ;2
i

tsfL22

hu 0
p;2u

0
sf ;1
i

tsfL11

hu 0
p;2u

0
sf ;2
i

tsfL22

264
375 � ÿ hu 0p;ju 0sf ;ii

tsfLii|{z}
No summation intended here

: �31�
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Note that no summation is intended for the ``i'' indexes in tsfLii
in [31]. The indexes (ii) refer to

the normal component of the surrounding ¯uid time scale tensor [14] that corresponds with the
(ith) direction of the surrounding ¯uid velocity component (u'sf,i).

The e�ective time scales in [14] can be used in [31]. Equations [26] and [31] can be combined
to obtain the desired di�erential equation, that is,

dhu 0sf ;iu 0p;ji
dt

� 1

tp
� 1

tsfLij|�{z�}
No summation intended here

0BBB@
1CCCAhu 0sf ;iu 0p;ji � 1

tp
hu 0sf ;iu 0sf ;ji: �32�

Equation [32] can be solved numerically over small time steps followed by [25] to give estimates
for the particle ¯uctuating velocity covariances.

2.3. Time step for integration

Wilson and Zhuang (1989) studied the restriction on the time step to be used in stochastic
Lagrangian models. Their studies have shown that there is no lower limit to the choice of the
time step. However, they recommend an upper limit of Dt = 0.1tfL to maintain the discretiza-
tion errors below 2%. For Markov-chain models [27], Sawford (1985) also suggest DtR0.1tfL
to resolve memory e�ects properly. Therefore, based on these recommendations, the time step
used here is

Dt � 0:1min�tp; tsfL11
�: �33�

Equation [33] is similar to the one used by Zhuang et al (1989) in their time-correlated stochas-
tic model, except that the ¯uid Lagrangian time scale is replaced by the surrounding ¯uid
Lagrangian time scale.

3 . MODEL VALIDATION STUDIES

The experiments of SL and WS involved particle dispersion in grid generated turbulence. The
primary di�erence between the two was that SL measured particle dispersion in the transverse
direction, whereas WS measured it in the longitudinal direction (relative to particle drift direc-
tion). The turbulence in both cases was near isotropic and was characterized by a simple decay
equation of the form

�U
2

u
02
f

� A
x

M
ÿ B

� �
�34�

where U is the mean air ¯ow speed, x is the distance from the grid in the direction of U, M is
the mesh size, and A and B are constants. In both cases the mean ¯ow speed and mesh size
were 6.55 m/s and 0.0254 m, respectively. In SL case, the mean ¯ow was aligned vertically, that
is, in the longitudinal direction. In the WS experiments, the mean ¯ow was aligned horizontally,
that is, in the transverse direction. In both experiments particle dispersion was measured in the
direction perpendicular to the mean ¯ow. The constants A and B for SL experiments were 39.4
and 12.0, respectively, whereas for WS experiments they were 54.88 and 7.987, respectively.

For isotropic, grid-generated turbulence, the dissipation rate of the turbulent kinetic energy is
given by

E � ÿ1:5U du
02
f

dx
� 1:5

U
3

AM

x

M
ÿ B

� �ÿ2
: �35�

Therefore [34] and [35] provide the expressions for u
02
f and E needed in [16] and [21].

The PDF propagation technique outlined above can be applied to the SL and WS exper-
iments, provided the value of the length scale ratio b or the value of the turbulence structure
parameter mt is known. The experiments of Sato and Yamamoto (1987) have shown that for
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isotropic, grid-generated turbulence, the ratio b ranges between 0.3 and 0.6. Their experiments
also showed that b is only a function of the turbulent Reynolds number based on the Taylor's
microscale (Rel), decreasing with increasing Rel. The turbulent Reynolds number is de®ned as

Rel �
�����
15
p u

02
f������
vf E
p : �36�

The turbulent Reynolds number calculated using [36] for the experiments of SL and WS was
51.5 and 43.7, respectively. These values of Rel corresponded to b = 0.39 (SL) and 0.5 (WS), re-
spectively (refer to ®gure 8 from Sato and Yamamoto 1987). Note that b = 0.39 is also consist-
ent with the experiments of SL (Hinze 1975). Using these values of b, it is now possible to
simulate the experiments of SL and WS. The simulation results are presented in the following
section.

3.1. SL Experiments (Snyder and Lumley 1971)

As mentioned, SL measured particle dispersion in the transverse direction. Therefore, [14a]
was used to calculate the surrounding ¯uid time scales. Snyder and Lumley measured particle
dispersion and velocity decay of four di�erent types of particles, including hollow glass, corn
pollen, solid glass, and copper. The particle physical properties required for the simulation are
presented in table 1.

The particles were injected into the wind tunnel at the axial location of x/M = 20 with an in-
itial speed equal to the mean ¯ow speed. The simulations were also started at this location, with
both the particle mean velocity and its variance set equal to the respective ¯uid velocities. Also,
the ¯uid-particle correlation in [32] is initially set equal to the product of the initial ¯uid and
particle root mean square ¯uctuating velocities. For the simulations, at the axial location of x/
M = 68.4, where the ®rst camera was present, both the particle positional variance describing
particle dispersion and the dispersion time were set equal to zero. This was done in order to
compare the model predictions with the reported experimental data.

The dispersion predictions for the four di�erent types of particles, together with the exper-
imental data, are presented in ®gure 1. These predictions were obtained from one particle
ensemble calculation per particle type. This is a remarkable reduction in the required number of
particle calculations because SSF models need about 2000±6000 individual trajectory calcu-
lations per particle type to correctly predict dispersion in such ¯ows (Baxter 1989; Zhuang et al.
1989; Chang and Wu 1994; Lu 1995). In the present case, the total CPU time for each ensemble
calculation on a HP UNIX workstation (715/64 SPU) varied from 0.01 s to 0.05 s. For these ex-
periments, Zhuang et al. (1989) simulated 2000 particle trajectories per particle type and
required approximately 2 h of calculation time per particle type on an IBM PC-AT; whereas,
Lu et al. (1993) simulated 6000 particle trajectories per particle type on a SUN SPARC 1 station
and required about 1800 CPU s per particle type to predict the dispersion statistics. Although
di�erent machines were used to simulate the SL experiments, the computational advantage of
the present model is obvious in the simple ¯ow considered here.

As ®gure 1 indicates, the predictions were obtained by setting the loop parameter (m) in [11]
equal to zero for hollow glass and equal to one for the other three particles. The reason for
using two di�erent values of m in ®gure 1 is that although the shape of the particle Lagrangian
correlation function (RL

p,ij) does not a�ect long-time dispersion processes, it does in¯uence the
short-time dispersion process, which is relevant here. The dispersion predictions obtained with
m = 1 for hollow glass were higher than those shown in ®gure 1, whereas predictions with
m = 0 for the corn pollen, solid glass, and copper were lower than those shown in ®gure 1.
Therefore, ®gure 1 shows that the exponential approximation (m= 0) for the particle transverse

Table 1. Input data for SL experiments

Property Hollow glass Corn pollen Solid glass Copper

Diameter (dp) m m 46.5 87.0 87.0 46.5
Density (rp) kg/m

3 260 1000 2500 8900
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velocity correlation function is adequate to predict the lighter hollow-glass particles, which are

characterized by very low drift velocities (vd=0.0167 m/s), whereas the other three heavier par-

ticles are better predicted by introducing one negative loop (m = 1) in RL
p,11 (or RL

p,22). This ob-

servation regarding the shape of the correlation function is consistent with the DNS studies of

Elghobashi and Truesdell (1992), which have shown that the CTE are manifested in the occur-

rences of negative loops in the Lagrangian velocity correlations for the heavy particles in the

transverse directions. Thus corn pollen (vd=0.198 m/s), solid glass (vd=0.442), and copper

(vd=0.483) are in¯uenced by CTE, and their velocity correlations decrease faster than the ones

for the hollow-glass particles. Figure 1 also shows that the model underpredicts the dispersion

for corn pollen particles even with m = 1. The same discrepancy for the corn pollen particles

are also observed in the time-correlated stochastic model of Zhuang et al. (1989) and the ran-

dom walk model of Walklate (1987). The eddy lifetime model of Milojevic (1990) appears to

provide better predictions for the corn pollen dispersion compared to those presented in ®gure 1.

However, for the purpose of simulations, Milojevic used b = 1 and tfL=0.5 CTk/E (CT=0.3),

that is inconsistent with the experiments of SL (b10.4; refer to page 426 in Hinze, 1975) and

those of Sato and Yamamoto (1987) (b = 0.39). Milojevic arbitrarily optimized his model con-

stant (CT) to match the data of SL (refer to ®gure 2 from Milojevic, 1990); whereas, in the pre-

sent model the value of b is taken to be a function of the turbulent Reynolds number de®ned in

[36], and it is introduced as an input parameter from the experiments. Overall, the predictions

presented in ®gure 1 are satisfactory.

It is evident from [10] that in order to model particle dispersion accurately, it is important to

predict correctly the decay of the product hu'2p,iiRL
p,ii. The results presented in ®gure 1 suggest

Figure 1. Comparison between SL experiments and simulations for particle dispersion. Experiment: w,
hollow glass; r, corn pollen;., solid glass; R, copper. Simulation: ÐÐÐÐ, hollow glass (m= 0);

Ð Ð Ð, corn pollen (m= 1); Ð ± Ð, solid glass (m= 1); - - - - - , copper (m = 1).

Figure 2. Comparison between SL experiments and simulations for particle velocity decay. Experiment:
q, turbulence;w, hollow glass; r, corn pollen; ., solid glass; R, copper. Simulation: ÐÐÐ, hollow

glass; Ð Ð Ð, corn pollen; Ð ± Ð, solid glass; - - - - - , copper.
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that the procedure developed in section (2.2) predicts adequately the particle velocity decay. The
particle velocity decay predicted using [25] is compared with the experimental data in ®gure 2.
Figure 2 shows that the hollow glass velocity decay curve matches the turbulent velocity decay
curve. Snyder and Lumley (1971) acknowledged that as much as 40% of the energy of the hol-
low-glass beads could have been lost due to the low sampling rates. This explains the discre-
pancy between the predictions and the experiments for hollow glass. The match between the
hollow glass and the turbulence decay also indicates that the hollow-glass particles responded to
all the turbulent ¯uctuations; that is, they behaved like ¯uid particles. This further corroborates
the observation in ®gure 1, that the exponential approximation for RL

p,11 accurately predicted
the hollow-glass dispersion. Figure 2 also shows that the decay for corn pollen is slightly under-
predicted for locations further downstream. The decay curves for both solid glass and copper
seem to be consistent with the trend observed experimentally. The predictions shown in ®gure 2
are very similar to the decay predictions from the time-correlated stochastic model of Lu (1995).
However, they are an improvement over the predictions obtained using an eddy lifetime stochas-
tic model of Milojevic (1990). Overall, the particle velocity decay predictions using the procedure
developed here are quite satisfactory for the case studied. Also, it important to note that, unlike
the model of Walklate (1987), the present procedure to predict the velocity decay does not
involve an empirical constant (refer to Wilson et al. 1988).

3.2. WS Experiments (Wells and Stock 1983)

In the experiments of WS, the particle dispersion was measured in the direction of the drift
velocity (longitudinal direction). Therefore, [14b] was used to calculate the surrounding ¯uid
time scales. Also, in this case the required longitudinal normalized particle velocity correlations
(RL

p,33) were obtained by assuming an exponential shape (m = 0 in [11]). WS measured dis-
persion of solid glass particles of two di�erent sizes, 5 mm and 57 mm. These particles were
charged before they were introduced in a uniform electric ®eld generated in the wind tunnel.
Thus they were able to arti®cially induce high drift velocities to study the e�ects of crossing tra-
jectories. The particle physical properties and the corresponding experimentally measured drift
velocities used in the present simulations are shown in table 2. The simulation results presented
below are for one ensemble calculation per input condition.

The initial conditions in the WS experiments were not well speci®ed, as in the case of the SL
experiments. WS reported their particle dispersion and velocity decay data at equally spaced
horizontal locations starting at x/M = 20. Therefore, the simulations were started at x/M = 20,
with the dispersion and the particle velocity variance set equal to the respective measured values
at that location. The dispersion time at the start of the simulation was set to zero. An equivalent
procedure has been used by others to simulate these experiments (Wang and Stock 1994; Lu
1995). It was further assumed that the particles had acquired their respective drift velocities
(table 2) at this initial location.

The comparison between the particle dispersion predictions and the measurements for the
5 mm particles are shown in ®gure 3. The ®gure shows that the comparison between predictions
and experiments, in both cases, are good for m = 0. The ®gure also shows that the particle dis-
persion reduces slightly for the high drift velocity case. This is because, for a ®nite drift velocity,
the time scale in [14b] is always less than the surrounding ¯uid time scale in the absence of drift.
If the reduction in the particle Lagrangian time scale is the main reason for the reduction in par-
ticle dispersion for the high-drift case, then it can be further inferred that these high-drift par-
ticles, because of their very small size (or inertia), responded to all the surrounding ¯uid
¯uctuations. This conclusion is con®rmed by the observation of Wells and Stock (1983) that, at

Table 2. Input data for WS experiments

Property 5 mm 5 mm 57 mm 57 mm 57 mm

Density (rp) kg/m
3 2475 2475 2420 2420 2420

Drift velocity (vd)
m/s

0 0.2365 0 0.258 0.545
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a 95% con®dence level, the small particle velocity decay was identical to that of the ¯uid for

particle drift velocities ranging from 0±0.2365 m/s.

Figure 4 shows the comparison between the dispersion predictions and the experiments for

the large particle type. It can be seen from this ®gure that the large particles with drift velocities

compare favorably with experiments for m = 0. Therefore, consistent with the DNS studies of

Squires and Eaton (1991), the longitudinal particle velocity correlations (RL
p,33) are less sensitive

to the particle drift velocity in comparison to the transverse particle velocity correlations (RL
p,11

and RL
p,22); and hence they (RL

p,33) can be modeled using a simple exponential shape. For the no-

drift case (absence of gravity), the simulations slightly overpredict the dispersion, compared to

the experiments. Also, in the absence of gravity, the dispersion for the larger particles shown in

®gure 4 slightly exceeds the corresponding dispersion for the smaller particles in ®gure 3. This

fact was also observed in the simulations of Lu (1995). Overall, the comparisons shown in

®gures 3 and 4 are satisfactory.

The predicted particle velocity decays for both particle sizes compared to the experimentally

observed decays are shown in ®gure 5. The ®gure shows the experimentally derived decay curve

for the 5 mm particle size (equation [35] from WS). For 57 mm particle size, the ®gure shows the

spread in the experimentally measured velocity decay for drift velocities ranging from 0±1.2 m/s.

As expected, the predicted decay curves for 5 mm particle size were practically the same for the

two drift velocity cases, and they matched the experimental curve exactly. For the 57 mm particle

size, only the vd=0.545 m/s case fell within the experimental range for this size. Wang and

Stock (1994) also predicted the decay for vd=0.545 m/s case and observed good match with the

experimental curve. The ®gure further shows that the model underpredicted the decay for the

other two 57 mm particle size cases, vd=0 and vd=0.258 m/s. From the three drift velocity cases

Figure 3. Comparison between WS experiments and simulations for dispersion of 5 mm particles.
Experiment: w, vd=0; ., vd=0.2365 m/s. Simulation: ÐÐÐÐ , vd=0 (m= 0); Ð Ð Ð, vd=0.2365 m/

s (m = 0).

Figure 4. Comparison between WS experiments and simulations for dispersion of 57 mm particles.
Experiment: w, vd=0; ., vd=0.258 m/s; r, vd=0.545 m/s. Simulation: ÐÐÐÐ , vd=0 (m= 0);

Ð Ð Ð, vd=0.258 m/s (m= 0); Ð ± Ð, vd=0.545 m/s (m= 0).
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simulated here for 57 mm particle size, Lu (1995) simulated the case of vd=0 and also underpre-
dicted the decay. Similar to ®gure 2, the predictions shown in ®gure 5 are better than those
reported by Milojevic (1990).

4 . CONCLUDING REMARKS

A PDF propagation model based on Taylor's approach and the particle momentum equation
has been successfully applied to predict particle dispersion in isotropic, homogeneous decaying
turbulent ¯ows. In this approach the ®rst two moments of the particle positional PDF are com-
puted by accounting for the particle inertia e�ects, the crossing trajectory e�ects, and also the
continuity e�ect. Unlike the Lagrangian stochastic models, the PDF propagation model does
not require the Monte Carlo procedure to estimate the required moments, and thus this
approach has the potential to be computationally e�cient. The two important particle properties
required in this approach were the particle ¯uctuating velocity covariance matrix, and the par-
ticle Lagrangian time scales. The procedure developed to estimate the particle velocity covari-
ance matrix was based on the particle momentum equation and it did not involve any empirical
constants. Ordinary di�erential equations describing the particle velocity covariances were
obtained and solved easily along the ensemble mean particle trajectory. The particle Lagrangian
time scales were taken to be the maximum of the particle relaxation time and the surrounding
¯uid time scales. The surrounding ¯uid time scales were based on the analytical study of Wang
and Stock (1993). All the turbulent scales required in the present model can be obtained from
practical turbulence models.

The model was applied to the experiments of Snyder and Lumley (1971) and those of Wells
and Stock (1983). The results from this study con®rm the adequacy of the Frenkiel functions to
approximate the shape of the normalized particle ¯uctuating velocity correlations. It also
showed that the short time dispersion process for particles in¯uenced by CTE is better predicted
by introducing a negative loop in their normalized transverse (relative to drift) velocity corre-
lations. These negative loops in the transverse velocity correlations are a consequence of the
continuity e�ect. The simple exponential approximation was appropriate for the normalized par-
ticle velocity correlations that are parallel (longitudinal) to the particle drift direction. Overall,
based on comparisons with experimental data, the model predictions for the particle dispersion
and the particle velocity decay were good for the cases studied. Future studies are planned to
extend the PDF propagation approach to model dispersion in complex, nonhomogeneous turbu-
lent ¯ows.

Figure 5. Comparison between WS experiments and simulations for particle velocity decay. Experiment:
w, 5 mm; ., 57 mm. Simulation: ÐÐÐÐ, vd=0 (5 mm); Ð ± Ð, vd=0.2365 m/s (5 mm); Ð Ð Ð, vd=0

(57 mm); - - - - -, vd=0.258 m/s (57 mm); Ð - Ð - Ð -, vd=0.545 m/s (57 mm).
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